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Long-wavelength collective shear dynamics are profoundly different in solids and liquids. Accord-
ing to the theoretical framework developed by Maxwell and Frenkel, collective shear waves vanish
upon melting by acquiring a characteristic wave-vector gap, known as the k-gap. While this predic-
tion has been supported by numerous simulations, experimental validation remains limited. In this
work, we track the dispersion relation of collective shear modes in a two-dimensional colloidal sys-
tem and provide direct experimental evidence for the emergence of a k-gap. This gap appears at an
effective temperature consistent with the onset of the glass transition and the vanishing of the static
shear modulus. Our results not only confirm the predictions of the Maxwell-Frenkel framework but
also highlight their relevance across continuous melting processes originating from low-temperature
amorphous solid phases.

At low wave vectors, collective shear dynamics in solids
are governed by propagating shear waves (phonons), with
their speed determined by the static shear modulus [1].
In contrast, in liquids, these dynamics are dominated by
diffusive processes governed by the finite shear viscosity
[2].

Within the theoretical frameworks established by
Maxwell and Frenkel [3], the transition between these
two regimes is governed by the telegrapher equation:

ω2
T + iωT /τ = v2k2, (1)

where ωT is the frequency of collective transverse exci-
tations, k the wave vector, v the instantaneous speed of
sound and τ a characteristic relaxation time. In Frenkel’s
microscopic picture of liquid dynamics [4], τ represents
the average time a particle takes to hop over potential
barriers, that can be related to the lifetime of local atomic
connectivity [5]. In contrast, Maxwell’s theory [6] identi-
fies τ as the Maxwell relaxation time, which characterizes
the macroscopic viscoelastic response of the medium.

Equation (1), which arises in a wide range of physical
systems [7], predicts that collective shear excitations in
liquids exhibit a characteristic dispersion:

Re(ωT ) = v
√
k2 − k2g , (2)

where kg ≡ 1/(2vτ) is the so-called k-gap, character-
izing the inverse length scale below which elastic re-
sponse persists. In the long-wavelength limit, k ≪ kg,
Re(ωT ) = 0 and the dynamics are liquid-like (diffusive).

∗ peter.keim@uni-duesseldorf.de
† b.matteo@sjtu.edu.cn

In the other limit, k ≫ kg, solid-like response and prop-
agating shear waves emerge also in liquids. This reflects
the high-frequency shear modulus that makes diving from
a 10-meter platform so exciting, while swimming gently
through water remains so relaxing.

Although the precise definition of τ in Eq. (1) remains
debated, it is generally expected that kg vanishes at the
melting temperature, below which the standard wave-
like dispersion ωT = vk, expected in solids, is recovered.
Since the initial validation of these theoretical predic-
tions in simulated molecular liquids and supercritical flu-
ids [8], the k-gapped behavior described by Eq. (2) has
been observed across a wide range of simulated systems,
confirming its universality with respect to interparticle
interactions (see [3] for a review).

On the other hand, experimentally verifying this mech-
anism in molecular liquids remains challenging due to
limitations of current techniques in accessing the low-
frequency, low-wave-vector regime. In [9], the emergence
of a cutoff wave number kg in the liquid-like phase of a
two-dimensional Yukawa dusty plasma was observed and
estimated as kga ≈ 0.16–0.31, where a is the 2D Wigner-
Seitz radius. More recently, [10] reported the existence of
a k-gap in the dispersion of collective transverse excita-
tions in the liquid-like phase of athermal vibrated granu-
lar matter. However, in both cases, the disappearance of
the wave-vector gap at the onset of solidification was not
clearly demonstrated. Furthermore, whether this mech-
anism remains valid across a continuous glass transition
from an amorphous solid to a liquid remains an open
question.

Here, we study a two-dimensional colloidal glass
composed of a binary mixture of super-paramagnetic
polystyrene spheres confined to a flat water–air inter-
face [11] (see the inset of Fig. 1(a) for an image of the
experimental setup). The small and large particles have
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FIG. 1. (a) The dispersion of collective shear modes as a function of the normalized wave-vector ka for Γ = 423, deep in the
amorphous glass phase. White symbols are the value of ΩT (k) obtained by fitting the dynamical transverse structure factor
ST (k, ω) with a Lorentzian function and the error bars indicate the corresponding linewidth Γ(k); green symbols are the position
of the maxima in ST (k, ω); blue symbols are the eigenvalues ωj obtained diagonalizing the transverse sector of the dynamical
matrix D(k). The background color is the absolute value of ST (k, ω) in a logarithmic scale. The inset shows an image of the
experimental setup. (b) Similar analysis for Γ = 152, slightly below the expected glass transition temperature, in the liquid
phase. The inset shows an example of the fit of the dispersion relation using the k-gap equation (2), with the horizontal dashed
line indicating the cutoff frequency ωmin arising because of the finite size system. (c) Same analysis for Γ = 64, deep in the
liquid phase. The inset shows the value of the pair correlation function g(r) for the three values of Γ reported in this figure.

diameters of 2.8µm and 4.5µm, respectively, with a mix-
ing ratio of 45 : 55. The particles interact via a tunable
magnetic dipole–dipole interaction, controlled by an ex-
ternal magnetic field and quantified by a dimensionless
coupling parameter Γ, which serves as an effective in-
verse temperature. Particle positions are tracked over
time using video microscopy and digital image analysis.
The elastic properties of this experimental system have
been thoroughly investigated [12], with evidence suggest-
ing the onset of a glass transition at Γ∗ ≈ 195 [13].
Following [12], we define the particle displacement

ui(t) = ri(t) − r̄i, where r̄i is the average position of
the particle i ∈ [1, N ] during a time interval ∆t ≈ 18900
s. We then derive the ‘dynamical matrix’, D(k) =
kBT ⟨u∗

kuk⟩−1, where uk is the Fourier transform of the
particle displacement in terms of the wave vector k and
⟨·⟩ indicates time average. The eigenvalues λj(k) of the
dynamical matrix correspond to the squared eigenfre-
quencies of the system ω2

j (k) and provide the spectrum
of excitations in the harmonic limit [14].

From the mode analysis, we compute the transverse
dynamical structure factor ST (k, ω),

ST (k, ω) ∝
k2

ω2

∑
λ

Eλ,T (k)δ (ω − ωλ) , (3)

where

Eλ,T (k) =
∣∣∣∑

j

(
k̂× eλ(j)

)
exp (ik · rj)

∣∣∣2. (4)

Here, ri is the position of the ith particle, eλ(j) is the

eigenvector corresponding to eigenfrequency ωj and k̂ ≡
k/|k|. To improve the statistics, we average ST (k, ω)

over different k̂ orientations.
In Fig. 1, we present the experimental dispersion rela-

tion of collective shear modes as a function of the dimen-

sionless wave vector ka, where a is the average interpar-
ticle distance ≈ 22µm (see inset of Fig. 1(c)), for several
representative values of the control parameter Γ, span-
ning from deep within the amorphous solid phase (panel
(a)) to the liquid phase (panel (c)). The background color
map shows the absolute value of the transverse dynam-
ical structure factor ST (k, ω), plotted on a logarithmic
scale to enhance contrast and visibility.
Blue filled symbols indicate the eigenvalues obtained

by diagonalizing the dynamical matrix D(k). Green sym-
bols mark the location of the maxima in ST (k, ω) along
constant-k cuts. Finally, the white symbols represent the
dispersion relation ΩT (k) extracted from Lorentzian fits
to ST (k, ω),

ST (k, ω) ∝
ω2ΓT (k)

(ω − ΩT (k))
2
+ ω2ΓT (k)2

. (5)

The error bars in Fig. 1 indicate the relative linewidth
ΓT (k).
We first observe that the three independent methods

yield consistent results for the dispersion of collective
shear modes in the solid phase. On the other hand,
the method based on the dynamical matrix becomes less
reliable in the liquid phase, as the validity of the har-
monic approximation is no longer guaranteed. More im-
portantly, we note a progressive evolution in the form of
the dispersion relation from panel (a), corresponding to
Γ = 423, to panel (c), which corresponds to Γ = 64.
In the amorphous solid phase (panel (a), Γ = 423),

shear modes exhibit a wave-like, propagating dispersion,
consistent with predictions from elasticity theory and
previously investigated in detail in Ref. [12]. In panel
(b), at Γ = 152, slightly below the reported glass transi-
tion point Γ∗ ≈ 195, in the liquid phase, the dispersion
relation undergoes a qualitative change at small wave
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vectors (ka < 0.5), where the emergence of a gap, con-
sistent with Eq. (2), becomes apparent.

This feature becomes even more pronounced in panel
(c), deep in the liquid phase (Γ = 64), where the k-gap
is clearly visible and larger than in panel (b). This trend
supports the formation of a wave-vector gap in the disper-
sion of collective shear modes as the system transitions
from the high-Γ amorphous solid to the low-Γ liquid.
This transition is further corroborated by the behavior
of the pair distribution function g(r) shown in the inset
of Fig. 1(c), which reflects the structural changes across
the glass transition.

FIG. 2. The dimensionless k-gap kga as a function of the con-
trol parameter Γ, playing the role of the inverse effective tem-
perature. The solid line corresponds to the best fit, Eq. (6).
The background color highlights the transition between the
solid phase at large Γ to the liquid state at low Γ.

After validating the emergence of a gap in the disper-
sion of collective shear modes with decreasing control pa-
rameter Γ, we extended our analysis to a broader range
of Γ values, spanning those shown in panels (a) to (c)
of Fig.1. For each case, we extracted the corresponding
dispersion relation and fitted the low-k region using the
k-gap equation (2). An example of this fitting procedure
is presented in the inset of Fig. 1(b) for Γ = 152. We
emphasize that due to the finite size of the experimen-
tal system, there exist lower bounds for both the wave
vector and the frequency, denoted as kmin and ωmin, re-
spectively. These cutoffs can be directly estimated and
must be properly accounted for in the analysis. In the
inset of Fig. 1(b), kmin has been subtracted from the
values on the y-axis, while ωmin is indicated by a dashed
horizontal line. Notably, this line aligns well with the fre-
quencies observed in the low-k experimental data below

the k-gap.
This analysis allowed us to determine the wave-vector

gap kg as a function of Γ, or equivalently, the effective
temperature Teff ∝ Γ−1. The extracted values of kg,
along with their associated error bars from the fitting,
are plotted in Fig. 2.
We find that the data are well described by the empir-

ical relation:

kga = 5.62 (Teff − T ∗
eff)

0.48
, (6)

with T ∗
eff ≈ 1/189, which is in close agreement with the

glass transition temperature previously reported based
on the discontinuity of the static shear modulus, Γ∗ ≈
195 [13].
Interestingly, the power-law exponent reported in

Eq. (6) is not far from what one would expect from mean-
field critical behavior. However, at this stage, we refrain
from making any definitive claims regarding the univer-
sality of this exponent.
Nonetheless, we note that the extracted values of the

k-gap fall within the range kga ∈ [0, 0.8] for the Γ values
explored. This range aligns remarkably well with val-
ues observed in other systems featuring vastly different
interparticle interactions and particle sizes, suggesting a
possible underlying universality, as originally proposed in
[15].
In summary, we have presented experimental evidence

for the emergence of a wave-vector gap in the dispersion
relation of collective shear modes across the glass tran-
sition in a two-dimensional mesoscopic colloidal system.
In the liquid state, the form of the dispersion is consis-
tent with predictions from Maxwell-Frenkel theory, and
the onset of the k-gap coincides with the glass transi-
tion, as independently determined from the vanishing of
the static shear modulus.
Our findings not only provide direct experimental con-

firmation of existing theoretical predictions, but also sug-
gest that this framework remains valid beyond conven-
tional first-order solid-liquid melting, extending into con-
tinuous glass transition and 2D melting scenarios.
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