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Experimental identification of topological
defects in 2D colloidal glass

Vinay Vaibhav 1,8, Arabinda Bera 1,8, Amelia C. Y. Liu 2,
Matteo Baggioli 3,4 , Peter Keim 5,6,7 & Alessio Zaccone 1

Topological defects are singularities within a field that cannot be removed by
continuous transformations. The definition of these irregularities requires an
ordered reference configuration, calling into question whether they exist in
disorderedmaterials, such as glasses.However, recentwork suggests thatwell-
defined topological defects emerge in the dynamics of glasses, even if they are
not evident in the static configuration. In this study, we reveal the presence of
topological defects in the vibrational eigenspace of a two-dimensional
experimental colloidal glass. These defects strongly correlate with the vibra-
tional features and spatially correlate with each other and structural “soft
spots”, more prone to plastic flow. This work experimentally confirms the
existence of topological defects in disordered systems revealing the complex
interplay between topology, disorder, and dynamics.

Topological defects (TD) represent a ubiquitous hallmark of nature
across different scales and they are generally defined as singularities in
a local order parameter. They can appear in a wide range of physical
systems1–3, including but not limited to liquid crystals, super-
conductors, superfluids, ferromagnets, biological systems4, and also
our early universe5. Despite being microscopic in nature, TD can exert
macroscopic influences on the behavior of the entire system. For
example, they have a strong influence on the optical properties of
liquid crystals and play crucial roles in various biological processes,
including cell division, tissue formation, and the motion of cellular
aggregates6.

In the realm of condensedmatter physics, the emergence of these
defects disrupts ordered states7 influencing collective excitations and
even triggering phase transitions, such as the Kosterlitz, Thouless,
Halperin, Nelson, Young (KTHNY) transition8 in two-dimensional
solids, investigated e.g. in a colloidal monolayer9. These defects pos-
sess distinct (topological) charges and exhibit robustness against
continuous structural deformations, rendering them essential for
understanding the fundamental properties of materials and being

totally different from other non-topological defects such as vacancies
or interstitials.

Topological defects in 3D crystalline solids manifest as disloca-
tions and disclination lines7, providing structural irregularities within
the otherwise ordered lattice, and the elementary carriers of plasticity.
Dislocations, in particular, allow for the motion of crystalline planes
sliding over each other (glide motion). The plasticity of crystalline
solids is by now fully understood in terms of dislocation dynamics and
dislocation networks, based on seminal concepts introduced by
Taylor10, Polanyi11 and Orowan12. In 2D, topological defects are point
defects and their thermal dissociation causes the elastic moduli to
disappear13.

In amorphous solids, instead, the absence of long-range order
complicates the identification and characterization of topological
defects (since, by definition, anorderedbackground is needed in order
to detect its irregularities), posing a big challenge in linking structure
with dynamics and predicting mechanical properties from the unde-
formed material configuration. The chase for structural topological
defects in amorphous solids, borrowing from the concepts widely
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used for crystals, is certainly not new and dates back to the early 70’s14.
Despite various efforts15–26, it was nevertheless concluded that topo-
logical quantities cannot be properly defined by looking at the struc-
tural characteristics of glasses.

Therefore, apart from isolated cases27,28, the identification of the
plastic carriers and of the “soft spots”, the regions (or particle clusters)
more prone to plastic flow, in glasses remained based until now on the
so-called structural indicators29 and on the phenomenological concept
of shear transformation zones (STZ)30,31. On the other hand, structural
“soft spots”, where particle rearrangements are initiated, have been
postulated to be analogous to dislocations in crystalline solids32 but
lacking any formal definition and topological character.

Recent advances in simulation and theory33 have pursued the idea
of looking for topological defects in glasses using dynamical quantities
suchas thedisplacement vectorfield or the eigenvectorfieldof normal
mode vibrations, instead of the seemingly featureless structure. Fol-
lowing this idea, Baggioli et al.34 have unveiledwell-defined topological
defects in polymer glasses under sheardeformation. These topological
defects are predicted by theory35 as singularities in the microscopic
displacement field, and aremathematically described by a continuous-
valued Burgers vector in accord with an early intuition of Kleman and
Friedel36. In amorphous solids, the atomic displacement field under an
external deformation comprises two vector fields, one of which is fully
ordered and is called the affine displacement field. This is simply the
trajectory along which each atom moves as a consequence of the
external strain field. The other vector field is known as the nonaffine
displacement field and is much more random and irregular. It arises
due to the local force imbalance on each atom in its affine position,
where it is subject to a non-vanishing force (due to the lack of inversion
symmetry) communicated by its neighbors37. In this sense, the affine
component of the displacement field represents the ordered back-
ground disrupted by the topological defects living within (but not
being equivalent to) the nonaffine displacements.

Following a similar logic, recent simulations of two-dimensional
glassymodel systems at T = 0 byWu et al.38 have revealed the presence
of well-defined topological defects (of different nature) within the
eigenvector field of vibrational modes, defined using the concepts of
winding number and vortex structure7. In this second scenario, the
ordered reference configuration, with respect to which defects are
identified, is provided by the plane-wave eigenvector field. Both
methods34, and38, have demonstrated a tight connection between
these TD and plastic deformations, proving the capability of these
structures to predict plastic spots and to correlate with the yielding
transition.

Even more recently, mixing the ideas of34 and38, numerical inves-
tigations by Falk and collaborators39 have identified saddle-like topo-
logical defects with quantized -1 charge in the displacement field,
generating Eshelby-like quadrupolar fields which align to form the
shear bands responsible for the yielding of amorphous solids. Inter-
estingly, shear banding is directly related to the percolation of STZ,
whose dynamics have been shown40 to be intimately connected to
vortex-like structures as those proposed by Wu et al.38. Finally,
although topological charge neutrality is always enforced by the con-
servation of global elastic dipole charge, the yielding process in
amorphous systems has been related to the clustering of net negative
topological charge41.

Topological defects in crystals can be also defined in terms of
geometrical properties (curvature and torsion)7. A similar approach
based on geometry has been recently proposed by Moshe, Procaccia
and collaborators as the origin of plastic screening in amorphous
materials42, where the defects are identified with the elastic (dipolar
and quadrupolar) charges. Interesting results in this context can be
also obtained in terms of a tensorial form of electromagnetism known
as vector charge tensor gauge theory that is able to reproduce the
structure of static stress correlations in granular materials43.

Importantly, all such characterisations of topological defects in
amorphous materials have been performed using numerical simula-
tions. Until now, no direct observation of topological defects in
experimental amorphous systems has been reported. Given the
importance of topological predictors of physical properties from
biological tissues to cosmology, being able to detect topological
defects in disordered structures experimentally is per se a funda-
mental goal of contemporary science.

Colloidal glasses have been proved to be an excellent experi-
mental setup to test the validity of various measures and theories
related to structure and dynamics44. Using optical microscopy, one
has direct access to the structural information at the particle level. In
this experimental study, we use bidisperse super-paramagnetic
colloidal particles which are confined by gravity at an atomically flat
interface to form a two-dimensional disordered structure. Applying
an outer magnetic field perpendicular to the monolayer, the parti-
cles interact via well defined dipole-dipole repulsion. This gives a
specific type of colloidal particles which become magnetised in the
presence of a magnetic field and form a two-dimensional disordered
structure. The particles interact via dipole-dipole repulsive interac-
tion, so, based on particle positions, we can also directly infer the
pairwise interaction energy. Using this information, we construct the
dynamical matrix (Hessian) of the system, and perform the identifi-
cation of topological defects in the field of normal modes. In this
process, the analysis of the experimental data reveals unique fea-
tures of vibrational characteristics of the system, and also the cor-
responding correlation with topology and “soft spots”. Our
experimental study demonstrates the existence of well-defined
topological defects in the vibrational field of a finite temperature
2D colloidal glass, suggesting further experimental studies that can
employ these defects to understand the thermal and mechanical
properties of many complex, disordered systems.

Results
Experimental setup
Our experimental setup comprises a colloidal monolayer, where
individual particles sediment to a flat water/air interface in a
hanging-droplet configuration under the influence of gravity. These
colloidal particles have two different masses and diameters, forming
a binary mixture (Fig. 1b), and exhibit Brownian motion within the
two-dimensional plane (see “Methods” and section 1 of the Supple-
mentary Material for further details on experiment). The particles
consist of polystyrene with incorporated nanograins of iron oxide,
thus interactions are paramagnetic in nature, and a magnetic dipole
moment is induced in each particle when an external magnetic field
is applied perpendicular to the surface. The particles are sterically
stabilized with Sodium Dodecyl Sulfate (SDS) slightly below critical
micelle concentration. As anionic tenside, residual surface charges
of the colloids are effectively shielded by counter-ions. The hard-
core diameter (including the SDS layer) is never probed by kBT and
the interaction is given by a pairwise dipole-dipole potential of the
form45,46 Epot ~ 1/r3, where r is the inter-particle distance. The strength
of the interaction can be controlled by the external magnetic field H,
setting the characteristic energy scale of the system. A crucial
parameter governing the system’s behavior is represented by
Γ = Epot/Ekin, denoting the ratio of potential energy (stemming from
this mutual dipolar interaction among particles) to the kinetic
energy (Ekin ~ T) arising from thermal motion47. It can be interpreted
as an inverse temperature or more didactically as dimensionless
pressure. For our study, we set Γ = 423, a value at which the system is
deep in a glassy state47. Optical microscopy is employed to record
the particle positions in the field of view at a certain interval of time
(Fig. 1a). The experimental setup is described in detail in48, while the
structure and dynamics of this system have been studied in previous
work45,46.
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Vibrational properties
Using the long-range dipole-dipole interaction potential among the
particles, we numerically construct the dynamical (Hessian) matrix
which is diagonalized to obtain the eigenvectors e!l and eigen-
frequencies λl. Here, λl indicates the l-th eigenvalue with l = 1,…, 2N; N
being the number of particles in the field of view. From the eigenva-
lues, we derive the corresponding eigenfrequencies ω2

l = λl (using a
mass-rescaled Hessian, see “Methods”). As expected from amorphous
solids at finite temperature49, the spectrum displays a fraction of
negative eigenvalues, corresponding to unstable modes with purely
imaginary frequency.We notice that the presenceof unstablemodes is
not incompatible with the solid nature of our experimental system. In
fact, unstable modes exist in glasses49 and even heated crystals50, as a
result of local anharmonicities. More in general, these unstable modes
correspond to dynamics over regions of the potential landscape with
locally negative curvature e.g., saddlepoints and potential barriers and
they are widely observed in supercooled liquids as well51. For the
unstable part of the spectrum (λ < 0), we follow the practice of re-
defining a positive definite frequency ~ω= �i

ffiffiffi
λ

p
and plotting the cor-

responding vDOS on the negative frequency axes upon identifying

ω= � ~ω. The results for the experimental vibrational density of states
(vDOS) D(ω) are shown in Fig. 2a.

As highlighted in the inset of Fig. 2a, the low frequencybehaviorof
the vDOS shows a linear scaling, D(ω) ~ ω. This behavior is compatible
with Debye’s law in two spatial dimensions but it is also a characteristic
feature of the vDOS of systems with unstable modes52,53. Interestingly,
we observe that the vDOS is symmetric at low frequency and the linear
scaling (including the corresponding slope) is the same for the stable
and unstable branches. We also notice that only the stable branch can
be directly interpreted as pertaining to vibrational modes stricto
sensu. We have further tested the robustness of these findings by
introducing a cut-off distance Rc in the interaction potential, incor-
porating randompolydispersity in particlemasses, and accounting for
experimental measurement errors in distances (see Supplementary
Figs. 3 and 4). Our results demonstrate that the characteristics of the
vDOS remain robust against variations in Rc, polydispersity, and pos-
sible experimental measurement errors.

In Fig. 2b, we present the same vDOS normalized by the low-
frequency linear (Debye) scaling, D(ω)/ω. In this representation, the
presence of an anomalous peak is clear around a characteristic

Fig. 2 | Vibrational characteristics of the system. a The vibrational density of
states D(ω) is presented, with the inset highlighting the low-frequency behavior.
The dashed line represents a linear trend, consistent with Debye’s prediction
D(ω) ~ωd−1, whered = 2.bD(ω)/ω versusω is plotted at low frequencies, with shaded

regions indicating the occurrence of the boson peak. c The participation ratio P(ω)
versus ω is depicted, providing insights into the localization properties of vibra-
tional modes across different frequency ranges.

Fig. 1 | Experimental realization of the colloidal monolayer forming a glass.
a Schematic showcasing the binary colloidal mixture with large and small particles
colored in silver and pink (side view, not to scale). A water droplet hanging by
surface tension inside a cylindrical hole in a glass plate, hosts the mixture of col-
loidal particles at the bottom water-air interface. The volume of water droplet is

actively regulated via a computer-controlledmicrosyringe to ensure aflat interface.
The zoomedportion shows the dipolemoment induced in each colloidal particle in
the presence of external magnetic field H

!
perpendicular to the monolayer that

leads to repulsive dipolar interaction. b Top view of the arrangement of colloidal
particles, reconstructed from positional data by video microscopy.
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frequency ωBP, marked within error bars by the shaded vertical strip
(15–17 Hz). This vibrational anomaly over Debye’s law is known as
“boson peak” and it is a common feature of amorphous materials54.
Despite the huge effort devoted to characterize and comprehend this
feature in 3D systems, its experimental detection in quasi two-
dimensional (2D) amorphous materials remains limited55,56. In this
respect, our result provides another experimental identification of the
BP anomaly in a specific type of 2D amorphous materials—colloidal
glasses—using directly the Hessian matrix rather than the covariance
matrix57. In these colloidal systems, the density of states using covar-
iance matrix have been extensively studied previously47,57. In anhar-
monic systems like ours, the vDOS obtained from the covariance
matrix formalism differs significantly from that obtained through
normal mode analysis (see, e.g.,58). Therefore, a direct comparison
between these two methods appears not trivial and requires further
systematic investigations. Also, the unit ofω (derived from the normal
mode analysis) is sec�1, while the frequency unit obtained from the
covariance matrix is μm−1 47,57, making this comparison more difficult.

To measure the extent of mode localization, we also calculate the
participation ratio P(ω), plotted in Fig. 2c. We observe a sharp peak
corresponding to acoustic phonon-type excitations at very low (posi-
tive) frequency, and a secondary broader peak at a higher frequency
possibly linked to optical-like excitations due to the particle size mis-
match. This secondary peak then drops sharply in correspondence of
the Anderson-localized highest frequency modes which terminate at
the Debye frequency of the system.

Topological defects
We move to the analysis of the spatial structure of the vibrational
modes by investigating the corresponding eigenvector fields. In order
to identify and characterize the topological properties of the eigen-
vector field, we resort to themethodoriginally proposed byWuet al.38,
based on the computation of the local winding number q. By con-
sidering the smallest square grid in our experimental data, we identify
vortices (anti-vortices) as topological defects with winding number (or
equivalently topological charge) q = +1 ( −1).

Figure 3a–d provide visual representations of the eigenvector
fields at various frequencies, with filled red and blue circles denoting
the locations of vortices and anti-vortices, respectively. Additionally,
the color map indicates the local angle of the eigenvector field with
respect to the x-axes. The structure of the eigenvector field is evidently
highly heterogeneous, displaying several vortex-like structures and
singularities. Notably, the eigenvectors at lower frequencies exhibit a
smaller number of topological defects. This suggests that the number
of defects grows with frequency and becomes more uniformly dis-
tributed in space. Significantly, at lower frequencies, there are fewer
topological defects, and a rich, cooperative, and swirling eigenfield
structure. This might be related to the fact that at low-frequency the
dynamics are dominated by plane waves, displaying a periodic struc-
ture of swirling (see e.g. Fig. 3 in59). Conversely, at higher frequencies,
there is a notable increase in defect density, with defects uniformly
distributed throughout the space and reduced coherence in the
eigenvector field. Interestingly, topological defects can be also found

Fig. 3 | Topological defects in the eigenvector field of the glass. a–d Eigenvector
fields within a rectangular field of view (54a × 40a, where a = 20.78 μm) are
depicted for various eigenfrequencies (ω = −4.25, 1.53, 28.22, and 141.15). The color
bar denotes the phase of the eigenvectors (θ= tan�1ðey=exÞ), capturing the direc-
tional informationof the vibrationalmodes. The size of the arrowhead indicates the

magnitude of the eigenvector field at that point. Topological defects are indicated
by filled circles, with red and blue representing q = +1 and −1 respectively, high-
lighting the presence of non-trivial topological features within the two-dimensional
colloidal glass system.
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in the eigenvectors corresponding to unstable modes, e.g. panel a
in Fig. 3.

Figure 4a presents the vibrational density of states D(ω) and the
total number of defects Nd against vibrational frequencies within the
same frame. This highlights a robust correlation between these
quantities across the entire frequency spectrum. The inset of Fig. 4a
delves into the low-frequency behavior of Nd, where the dashed line
signifies the linear dependence on ω. To further establish the corre-
lation between vibrational properties and topological defects, we cal-
culate the Pearson correlation coefficient, C(ω), at various ω values,
considering data points within a specified frequency rangeω − Δω/2 to
ω + Δω/2 (see “Methods”). Figure 4b illustrates the variation of C(ω) for
different frequency width values (Δω = 50, 75, and 100). We observe
that the fluctuations ofC(ω) decrease as the frequencywidth increases.
The proximity of C values to unity across the majority of the spectrum
signifies a robust correlation between D(ω) and Nd. However, intrigu-
ingly, instances of strong anti-correlation are observed within specific
frequency ranges, as highlighted by gray vertical stripes in Fig. 4a, b.
Particularly noteworthy is the presence of such anti-correlation within
the frequency range ω ∈ [250, 340], prompting further theoretical
investigation to unravel its origin and its consequential impact on the
system’s structure and dynamics. This observed anti-correlation arises
because, in this frequency range, the DOS is decreasing while the
number of defects continues to increase gradually. At thismoment, we
do not have a concrete understanding of the physical significance of
these anti-correlations appearing at large frequencies, above the

Debye regime where both Nd(ω) and D(ω) scale like ω (and nicely
correlate).

It is important to notice that our scalingD(ω)∝ω at low frequency
seems at first sight in contradiction with the results reported in ref. 38.
In order to reveal the cause of this discrepancy, we emphasize that the
results of ref. 38 are obtained for a zero temperature system. Here, we
perform additional simulations in a 2D Lennard-Jones glass at zero as
well as finite temperatures (see Section 6 of the Supplementary
Material). At T = 0, we reproduce the results in ref. 38, where Nd scales
quadratically with the frequency. We further extend our analysis at
finite temperatures. As expected, the fraction of unstablemodes grows
with temperature, in contrast to the athermal case where such modes
are absent, as shown in 5a. Our focus is on the small ω behavior of Nd

with the temperature change. In Fig. 5b we observe that, unlike for the
athermal case where Nd ~ ωα with α = 2, the scaling of the number of
defects with frequency becomes linear at finite temperature. The
scaling of the number of defects in the experimental system shows an
exponentα close to 1, compatiblewith the simulation results at finiteT.
In Fig. 5b, we show that this difference is due to the finite temperature
dissipative effects and we recover the results of 38 in the zero tem-
perature limit, solving the apparent contradiction.

Structural features of defects and their correlation with
soft spots
To understand the spatial organization of defects, we calculate partial
pair correlation functions gPP(r), gPN(r) and gNN(r) for positive-positive,

Fig. 4 | Correlation between vibrational density of states and number of
topologicaldefects. aThe vibrationaldensity of states (D(ω)) and the total number
of defects (Nd) are plotted against vibrational frequencies. The left-side vertical axis
corresponds to D(ω), while the right-side axis corresponds to Nd. The inset illus-
trates the low-frequency behavior, with dashed line indicating linear trend.

b Pearson correlation coefficients (C) between D(ω) and Nd(ω) are depicted for
varying ω, considering three different frequency widths: Δω = 50, 75, and 100. The
shaded gray area marks the frequency range ω ∈ [250, 340], where strong anti-
correlation is observed in both panels (a, b).

Fig. 5 | Simulation of 2D Lennard-Jonnes glass38 at finite temperature. a Vibrational density of states D(ω) and (b) number of topological defects Nd as a function of
frequency ω are shown in linear and double-log scale, respectively, at different temperatures for a two dimensional Lennard-Jones glass.
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positive-negative and negative-negative defect pairs respectively, as
shown in Fig. 6 (see “Methods” for definition). From the positive-
positive and negative-negative defect correlation in Fig. 6a, c, it is clear
that, for small r, there is no correlation (or even a “depletion” zone near
contact), indicating the absence of defects with similar charge in the
vicinity of a tagged defect. Instead, the positive-negative correlation in
Fig. 6b shows a very highprobability for thepresenceof another defect
with an opposite charge in the neighborhood of a tagged defect. This
observation suggests that defect chargeswith the same sign repel each
other and those with opposite sign attract each other. It appears that
the repulsion between two defects both with negative sign is slightly
stronger because the repulsive “hard-core” distance at small separa-
tion r in gNN is bigger than that in gPP. Overall, both attraction and
repulsion become weaker with the increase in frequency ω, and at
sufficiently high ω such defects are expected to be completely
uncorrelated and homogeneously distributed.

In recent studies, it has beenpossible to identify “soft spots” in the
low-frequency vibrational modes where mesoscale relaxation or rear-
rangements are prone to happen32,60. We identify such soft spots in the
present system using the softness field defined in60 and calculate their

radial pair correlation with positive (gPS(r)) and negative (gNS(r))
defects (see “Methods” and Supplementary Fig. 7). Figure 6d–e shows
the correlation for ω = 15, 20, 30, 50, 100. It is quite evident that the
defects with negative charge are highly correlated with soft spots at
small r, while defects with positive charge show no such correlation.
Thismeans negative charge defects tend to appear in the close vicinity
of soft spots. Furthermore, it will be expected that these defects with
negative charge will most likely be associated with mobile regions in
structural relaxation or plastic rearrangements under deformation.
Defects with positive charge located somewhat further away from the
soft spots are alsocorrelated, evidencedby thepeak in gPS at r≈40μm.
This is expected because we have already seen a significant correlation
between +1 and -1 defects at the same length-scale, see Fig. 6b.With the
increase in ω, the correlation becomes weaker with both types of
defects. Fig. 6f shows soft spots (open sysmbols) with the color map
of weighted charge density field obtained by the averaging of
topological charge in the frequency range 0 < ω < 50 (see Methods for
the definition). This visual representation demonstrates the correla-
tion between the zones with high negative charge density and
soft spots.

Fig. 6 | Structure of defect pairs and the spatial correlation between defects
and soft spots. a–c Pair correlation functions for positive-positive, positive-
negative and negative-negative defect pairs (gPP(r), gPN(r) and gNN(r)), respectively,
for different ω values. Plots other than ω = 50 are shifted by the multiple of 0.5 for
clarity. d, e Spatial correlation between soft spots (with top 10% softness) and

topological defects with,d, positive charge gPS(r), and, e, negative charge gNS(r), for
differentω values. For better clarity, curves other thanω = 15 are shifted upward by
the multiple of 0.25. f Color map of charge density field obtained by the ω−1

weighted averaging of topological charge over frequencies in the range 0 < ω < 50,
shown together with the soft spots (open symbols).
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Discussion
Based on our experimental findings and analysis, we have successfully
explored the topological characteristics of a two-dimensional colloidal
glass system under the influence of an external magnetic field.
Through meticulous control of experimental parameters and numer-
ical techniques, we have revealed intriguing insights into the interplay
between topology, vibrational properties, and defect dynamics within
disordered systems.

Our investigation hasunveiled thepresence of topological defects
within the eigenspace of vibrational frequencies of an experimental 2D
colloidal glass. This provides a direct experimental observation of
topologically non-trivial features in a colloidal glass. Notably, the
observed correlation between the vibrational density of states (vDOS)
and the total number of defects underscores the profound influenceof
topology on thematerial’s vibrational behavior. The robustness of this
correlation, as evidenced by the Pearson correlation coefficient ana-
lysis, highlights the significance of topological defects in shaping the
structural and dynamical properties of colloidal glasses.

By analyzing the structural properties of the topological defects,
we have shown that defects of opposite charge pair together while
defects with same charge repel each other, as expected from our
intuition fromelectromagnetism.More importantly, we have observed
a strong correlation at short distance between defects with negative
topological charge and soft spots, confirming a close relation between
anti-vortices and plasticity as suggested in38. Interestingly, we have
found that a correlation between positive defects and plastic spots
exists at larger length-scales as well.

Our experimental analysis complements and confirms several of
the results previously obtained from simulations at zero
temperature38, but it also provides several important new lessons and
clarifications. First, it proves that the topological vortex-like defects
proposed in38 surviveatfinite temperatures. Second, it clarifies that the
number of these defects in realistic, andnecessarily finite temperature,
systemsdoes not scalequadraticallywith frequency, as argued in38, but
rather linearly with it, nicely correlating with the vibrational properties
of the system. Finally, our experimental data supports the claimof 38 of
a strong local correlation between the −1 defects and plastic spots at
short scales. Nevertheless, they also reveal a strong correlation with
the +1 defects at an intermediate larger scale, that is consistent, and
indeed expected, from the strong correlation among +1 and −1 defects.
This suggests that +1 and −1 defects tend to pair together and create
dipole structures, with possible intriguing connections with recent
results about plastic screening in amorphous systems by Lemaître
et al.42.

In conclusion, our study on a sedimented 2D colloidal glass with
ideal dipole-dipole interactions demonstrates the existence of math-
ematically well-defined topological defects in a completely disordered
experimental system. This finding suggests that similar analytical
approaches may be usefully extended to other structural glasses. It
contributes to advancing our understanding of the intricate interplay
between topology, vibrational properties, and defect dynamics in
disordered systems. The insights gained from this research not only
deepen our knowledge of disordered materials, but also pave the way
for future explorations aimed at uncovering the fundamental princi-
ples governing the mechanical and thermal behavior of complex
materials. As our understanding continues to evolve, we anticipate that
further studies will shed light on new phenomena related to the pre-
sent observations, and unveil novel avenues for exploration in con-
densed matter physics, biology, materials science and cosmology.

Methods
Experimental details
We consider here an experimental setup of an equimolar binary col-
loidal mixture (consisting of species A and B) of spherical particles in
2D, with two different magnetic moments. The two species have

diameters dA = 4.5μm, dB = 2.8μm, magnetic susceptibilities (per par-
ticle) χA = 6.2 × 10−11 Am2/T, χB = 6.6 × 10−12 Am2/T and mass densities
ρA = 1.5 g/cm3, ρB = 1.3 g/cm3. A constant magnetic fieldH = 3.9 × 10−3 T
is applied perpendicular to the plane containing the particles which
induces magnetic momentMA = χAH orMB = χBH in each particle, thus,
particles interact via the dipole-dipole pair potential with each other.
The potential energy between two constituent particles separated by a
distance r is given by

VαβðrÞ=
μ0

4π

MαMβ

r3
, ð1Þ

with α, β ∈ {A, B} and μ0 = 4π × 10−7 Tm/A is the vacuum permeability.
Here we have approximately N = 2300 number of particles in the
rectangular field of view 1158 × 865 μm2 in each sample.

Vibrational analysis
Weobtain eigenvalues λl (l = 1, 2,…, 2N) and associated eigenmodes by
diagonalizing the dynamical (Hessian) matrix given by

Hij =
1ffiffiffiffiffiffiffiffiffiffiffi
mimj

p ∂2U
∂ri∂rj

: ð2Þ

Heremi and ri are the mass and spatial coordinates of the ith colloidal
particle respectively. Also, U = ∑α<β Vαβ is the potential energy of the
system. Further, we estimate the eigenfrequencies as ωl =

ffiffiffiffi
λl

p
. From

the distribution ofω, we obtain the vibrational density of states (vDOS)

DðωÞ= 1
2N � 2

X
l

δðω� ωlÞ: ð3Þ

Note that, we conventionally represent the imaginary frequencies with
negative values while showing the density of states.

Characterization of topological defects
For each eigenvector field ðexi , eyi Þ at ωi (i = 1, 2, …, 2N), we assign an
angle θð r!Þ on every site at r! of a 54× 40 rectangular lattice having
grid length rc in both the directions and superposed to the experi-
mental system.We obtain the phase angle θð r!Þ at each lattice site as38

tanθð r!Þ=
P

iwð r!� r!iÞe y
iP

iwð r!� r!iÞexi
, ð4Þ

where r!i is the location of particle i, and wð r!� r!iÞ is a Gaussian
weight function, defined to bewð r!� r!iÞ= expð�j r!� r!ij2=r2c Þ with
rc = 20.78 μm (lattice spacing).

We determine the topological charge q inside each smallest
square grid by evaluating the line integral of ∇

!
θ over a closed path

inside the lattice, given by

q=
1
2π

I
∇
!

θ � d‘!, ð5Þ

where d‘
!

represents the line element along the closed square loop.
Typically, the value of q is an integer, and it is used to identify the
locations of defects, which are characterized by non-zero values of q at
the center of the smallest square regions. For the calculation of
topological charge, we do not enforce the periodic boundary
conditions. We also show a low-frequency configuration at ω =
1.53 Hz for three different interpolation grid lengths (rc) in Supple-
mentary Fig. 5, to show the robustness of the defect identification
against the choice of grid lengths61. Further, these configurations are
presented using Schlieren patterns62,63, where defect locations are
marked by the merging of distinct color intensities, while uniform
color regions indicatedefect-free areas (see Supplementary Figs. 5d±f).
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Suchpatterns are consistentwith the visualization of defects identified
using eq. (5).

We calculate the total number of defects Nd by counting the
defects with q = +1 and −1. This defect behavior remains robust against
slight variations in the interpolation grid length rc (see Supplementary
Fig. 6). For a givenmodeof eigenfrequencyω, the radial pair correlation
between topological defects α and β with {α, β} ∈ {P, N}, is defined as

gαβðrÞ=
LxLy

2πrNαNβ

XNα

i= 1

XNβ

j = 1

δðr � jrij!jÞ: ð6Þ

Here, Lx, Ly are the dimensions of the region in which correlation is
calculated, {P, N} are the positive and negative topological defects, Nα

and Nβ are the respective numbers of such defects, and jrij!j is the
distance between defect i and j.

Calculation of correlation coefficients
The Pearson correlation coefficient (C(ω)) is calculated as64

CðωÞ=
P

fωgðDðωÞ � �DðωÞÞðNdðωÞ � �NdðωÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fωgðDðωÞ � �DðωÞÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fωgðNdðωÞ � �NdðωÞÞ

2
q , ð7Þ

where �DðωÞ and �NdðωÞ are the average value of D(ω) and Nd(ω),
respectively, within the considered range of ω ∈ [ω − Δω/2, ω + Δω/2],
where Δω defines the frequency width.

To ensure a thorough examination of the correlation between
D(ω) and Nd(ω) across the frequency spectrum, we employ the fol-
lowing approach. Initially, we compute the average data for D(ω) and
Nd across the entire range of ω. Subsequently, we construct an inter-
polation function, enabling us to access the values of D(ω) and Nd for
any given ω.

For each ω, we interpolate 2 × 104 data points with increasing ω
within the range ω ∈ [ω − Δω/2, ω + Δω/2]. Utilizing this interpolated
data, we then calculate C(ω) using Eq. (7). This meticulous procedure
guarantees a comprehensive assessment of the correlation between
D(ω) and Nd(ω), ensuring robust and reliable results across the entire
frequency spectrum.

Definition of soft spots and their correlation with topological
defects
We calculate the softness fieldϕi for each particle i by superposing the
participation fraction weighted by the corresponding mode energy in
the low-frequency vibrational modes32,60,

ϕi =
1
Nm

XNm

j = 1

jeðiÞj j2
miω

2
j

: ð8Þ

Here eðiÞj is the eigenvector corresponding to particle i associated with
frequency ωj ∈ (0, 50) and Nm is the number of low energy modes
within this frequency range. Further, we identify the particles with top
10% softness value as soft spots.

The radial pair correlation functionbetween the soft spots and the
topological defects with positive charge in mode l is defined as

gl
PSðrÞ=

LxLy
2πrNl

dNS

XNl
d

i = 1

XNS

j = 1

δðr � jrij!jÞ, ð9Þ

where Lx, Ly are the dimensions of the region in which correlation is
calculated, Nl

d is the number of defects with positive charge in mode l
inside the region, NS is the number of soft spots inside the region and
jrij!j is the distance between topological defect i and soft spot j.

Similarly, gl
NS, correlation between defects with negative charge cor-

responding to ωl and soft spot can be defined.

Calculation of charge density
To calculate the topological charge density, we divided the experi-
mental box into square cells of size as = 20.78 μm.Within each cell, we
counted the number of topological defects np and nn with winding
numbers +1 and −1, respectively, for ωi ∈ (0, 50). The average charge
density within each square cell is defined as

�c=

P
iðnp � nnÞ=ωiP

i1=ωi
: ð10Þ

Here, we employed the weighting factor 1/ωi to account for the linear
dependence of the total number of defects on lower frequencies.

Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information or from the corresponding
authors upon request. The processed microscopy data used in this
study is available at a dedicated GitHub repository (https://github.
com/vinayphys/2DColloidTopoDefect)65. Source data are provided
with this paper.

Code availability
The codes that support the findings of this study are available upon
request by contacting the corresponding authors.
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